Nonlinear Approximation Using Gaussian Kernels

نویسنده

  • THOMAS HANGELBROEK
چکیده

It is well-known that non-linear approximation has an advantage over linear schemes in the sense that it provides comparable approximation rates to those of the linear schemes, but to a larger class of approximands. This was established for spline approximations and for wavelet approximations, and more recently for homogeneous radial basis function (surface spline) approximations. However, no such results are known for the Gaussian function. The crux of the difficulty lies in the necessity to vary the tension parameter in the Gaussian function spatially according to local information about the approximand: error analysis of Gaussian approximation schemes with varying tension are, by and large, an elusive target for approximators. We introduce and analyze in this paper a new algorithm for approximating functions using translates of Gaussian functions with varying tension parameters. Our scheme is sophisticated to a degree that it employs even locally Gaussians with varying tensions, and that it resolves local singularities in a non-local way. We show that our algorithm is suitably optimal in the sense that it provides approximation rates similar to other established nonlinear methodologies like spline and wavelet approximations. As expected and desired, the approximation rates can be as high as needed and are essentially saturated only by the smoothness of the approximand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot Control by Least-Squares Policy Iteration with Geodesic Gaussian Kernels

The least-squares policy iteration approach works efficiently in value function approximation, given appropriate basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function. However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. To overcome this problem, new basis functions called geo...

متن کامل

TIME-VARYING FUZZY SETS BASED ON A GAUSSIAN MEMBERSHIP FUNCTIONS FOR DEVELOPING FUZZY CONTROLLER

The paper presents a novel type of fuzzy sets, called time-Varying Fuzzy Sets (VFS). These fuzzy sets are based on the Gaussian membership functions, they are depended on the error and they are characterized by the displacement of the kernels to both right and left side of the universe of discourse, the two extremes kernels of the universe are fixed for all time. In this work we focus only on t...

متن کامل

Geodesic Gaussian kernels for value function approximation

The least-squares policy iteration approach works efficiently in value function approximation, given appropriate basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function. However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. In this paper, we propose a new basis function based on ...

متن کامل

Kernel Based Learning for Nonlinear System Identification

In this paper, an efficient Kernel based algorithm is developed with application in nonlinear system identification. Kernel adaptive filters are famous for their universal approximation property with Gaussian kernel, and online learning capabilities. The proposed adaptive step-size KLMS (ASS-KLMS) algorithm can exhibit universal approximation capability, irrespective of the choice of reproducin...

متن کامل

Online learning in L2 space with multiple Gaussian kernels

We present a novel online learning paradigm for nonlinear function estimation based on iterative orthogonal projections in an L space reflecting the stochastic property of input signals. An online algorithm is built upon the fact that any finite dimensional subspace has a reproducing kernel, which is given in terms of the Gram matrix of its basis. The basis used in the present study involves mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009